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An analysis of the observability of the classical electromagnetic gauge 
field based in its quantum effects shows that this is physically determined up 
to equivalences. By contrast a similar analysis of the gravitational gauge field 
from Einstein's General Relativity theory shows that this field is univocally 
determined by the trajectories of material particles provided they feel only 
that gravitational field, and its proper gravitational and quantum effects are 
negligible. This difference of observability in both kinds of gauge fields is 
caused by the attachment of the gravitational field in the Einstein theory to 
the space-time, and this difference must be taken into account to formulate 
unified gauge theories with both kinds of fields. 

1. I N T R O D U C T I O N  

Call ing gaugef ie ld  any connec t ion  defined in a pr incipal  fiber bundle  on 
a space- t ime manifold ,  the Lev i -Civ i t a  connect ion  F 0 o f  any  space-t ime 
(~ ' ,  g )  is obvious ly  a gauge field, and  therefore,  since such a connec t ion  
descr ibes  the gravi ta t ional  field cor responding  to ( t i t ' ,g )  in Einstein 's  
Genera l  Rela t iv i ty  theory,  the la t ter  is also a gauge field. On the o ther  hand,  
classical  e lec t romagnet ic  fields in quan tum mechanics  are descr ibed by  con- 
nect ions  defined in pr incipal  fiber bundles  on open and connected  submani -  
folds  o f  the mani fo ld  o f  a space-t ime (Greub  and Petry,  1975). Accordingly ,  

1 Based partly on the Ph.D. dissertation of M.A. submitted to Zaragoza University. 
2 With partial financial support of I. E. N. (Spain). 
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in this picture the electromagnetic field is also a gauge field. But, up to which 
point are these gauge fields, associated with the physical gravitational or 
electromagnetic fields, observable in both theories? Or, can there exist 
experimentally indistinguishable gravitational or electromagnetical gauge 
fields ? The answer to these two questions is the aim of the present paper. 
In Section 2 we prove the existence of an infinity of electromagnetic gauge 
fields defined in any principal fiber bundle corresponding to the same values 
of the electric and magnetic fields, and we give a characterization of their 
equivalence classes. In Section 3 we see that the results of the Aharonov- 
Bohm experiment (1959) imply the observability of the electromagnetic field 
equivalence classes and the experimental indistinguishability of the gauge fields 
belonging to the same class. In Section 4 we prove that the knowledge of the 
trajectories of the material particles whose masses and quantum effects are 
negligible under the effect only of a gauge gravitational field determine the 
latter in a unique way. Finally, in Section 5 we analyze the causes and 
implications of the different degree of observability of the gravitational and 
electromagnetical gauge fields disclosed in Sections 3 and 4. 

2. GAUGE FIELDS ASSOCIATED WITH CLASSICAL ELECTRO- 
MAGNETIC FIELDS COMPATIBLE WITH QUANTUM MECHANICS 

The classical electromagnetic field is described (Sachs and Wu, 1977) by 
means of a real, closed 2-form F (dF = O) defined in an open connected 
submanifold M of the manifold ~ '  of a space-time (dr', g) in such a way that 
~ '  - M is the set of points in ~ in which either the electrical sources are 
singular or there are magnetic sources. The restriction of g to M induces a 
space-time structure in M. 

The behavior of a punctual classical particle under a certain field F can 
be described (Sternberg, 1978) by a mechanical system whose symplectic form 
in the phase space T*(M) is 

r = d O  - ( e / e ) I I * . F  

where 0 is the canonical 1-form of T*(M) and IIr. is the canonical 
projection of T*(M) on M. 

Consequently, as Sniatycki (1974) has shown, the condition of pre- 
quantization (Kostant, 1970) for such a mechanical system implies that 

~2[(e/he)r] E i2(H2(M, Z)) (2.1) 

i 2 being the homomorphism of the (;ech cohomology group/q2(M, ,7) in the 
/q2(M, ~) induced by the homomorphism of inclusion of Z in ~, [(e/he)F] 
being the Rham cohomology class to which the closed 2-form (e/hc)F belongs, 
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and E 2 being the isomorphism of H ~ ( M ,  ~) in / ~ ( M ,  N) established by 
Rham's  theorem. Now, property (2.1) is the necessary and sufficient condition 
for the existence of a connection defined in a principal fiber bundle P(M, U(1)) 
with curvature (e/hc)II*F x, X being the element of  the Lie algebra tangent 
to the curve w: R ~ U(1) with w(a) = e 2 ~  for every a e R (Asorey, 1978); 
summarizing, the prequantization condition for the mechanical system associ- 
ated to a particle subject in M to afield F implies the existence of a gauge field 
in a principal fiber bundle P(M, U(1)) whose curvature is (e/hc)II*F x. In this 
sense, only those electromagnetic fields which satisfy property (2.1) are 
compatible with quantum mechanics. 

But generally, the gauge field associated in that way to the field F 
satisfying (2.1) is not unique, for ~o being the 1-form of connection of one 
such P defined in a fiber bundle P(M, U(1)), gauge fields F'  whose 1-form of 
connection ~o' satisfy 

, , / d ~  ] (2.2) 

where ~: is a function of M on C with values in U(I), give rise to the same 
field F. Since, in general, an infinity of  functions ~: of M on C with values in 
U(1) and d~: # 0 exist, there exists, too, an infinity of  gauge fields with the same 
electric and magnetic fields. However, given that all gauge fields P'  defined by 
(2.2) are equivalent [understanding the equivalence of two gauge fields defined 
on M with the same gauge group G as the existence of an M isomorphism 
(p, idG) between the principal fiber bundles, in which the two gauge fields are 
defined, which transforms one into the other], there is room for asking 
whether at least all gauge fields giving rise to the same F are equivalent. In 
general this is not true either, as we shall see in the sequel. 

Since U(1) is an Abelian group, the element k~ r of  the holonomy group 
of a gauge field F defined on a principal fiber bundle P(M, U(1)) in a point 
u ~ P corresponding to a closed curve ?, with 7(0) = 7 (1) = lip(u) is inde- 
pendent of  the element u of  II~71(IIe(u)) considered. Indeed, yu being the 
horizontal lift with respect to P of 7 in P with 7u(0) = u, for any ff e P with 
lip(u) = lip(g) the horizontal lift y~ o f y  with respect to F in P with 7a(0) = 
satisfies 

7~(t) = yu(t).a 

a being the element of  U(1) with ~ = ua. In this way 

7a(1) = y~(1), a = r~(O) �9 k, r .  a = ya(O), k,  v 

i.e., kr v equals the element of  the holonomy group of F in 9 corresponding 
to y. 
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Proposition 1. Two gauge fields F and F' defined on M with gauge 
group U(1) are equivalent iff for any closed curve 7 of M the equality 

k~ v = k~ v" (2.3) 

holds. 

Proof. I f  P and P' are equivalent, an M isomorphism (0, idc~(l~) exists 
between the principal fiber bundles P(M,  U(1)) and P'(M,  U(1)), in which F 
and F' are defined, which maps P on F'. Accordingly, for any closed curve 7 
of M holds that y being any horizontal lift of 7 with respect to P in P, p(y) 
is a horizontal lift of 7 with respect to P' in P'. Then, since 

O(V)(1) = O(V(1)) = O('f(O).k/') = p(v(O)).k, ~ = p(y)(O).kf  

(2.3) holds. 
Conversely, let us assume that P and P' satisfy (2.3) for any closed curve 

7 in M. Choosing Uo e P and uo e P '  with IIv(uo) = IIv,(u~) let us define the 
mapping p of P in P '  in the following way. I f  e is any curve of M with c(O) = 
IIv(uo) and C~o, c~; are its horizontal lifts with respect to P in P and with 

respect to P' in P '  such that c~o(O ) = uo and c~;(O) = u;, let us make 

O(C~o(t)) = c~;(t) 

for all t e [0, 1]. Since M is connected arcwise, there exists, for each x e M, 
a curve c with e(0) = IIe(u0) and c(1) = x, and therefore in each fiber of P 
there is some element for which p is defined. Let us call P0 the set of  elements 
of P in which O is defined in such way. Defining p for the rest of  the elements 
of P in such way that 

p(u. a) = p(u). a 

for any u e Po and a e U(1), it is trivial to see that (p, idv(~)) is an M homomor-  
phism of P in P' .  And obviously p transforms I '  in F'. In the same way we can 
construct an M homomorphism (p ' , /dvm ) of P '  in P which transforms F' 
into F.  But from the construction of O and p' it follows that pop' = idp. and 
p'oo = ide, which implies that (p, idv(~) is an M isomorphism of P(M,  U(1)) 
in P'(M,  U(1)) and therefore the equivalence of P and P'. �9 

Calling f~Xxo the H group of closed curves in M with beginning and 
end in a point x0 of M, it follows from the previous proposition that the 
mapping K of the set of equivalence classes of  gauge fields on M with gauge 
group U(1) onto H - H o m  (f~M~o, U(1)), defined for the class of any gauge 
field P by 

~([r])(7 ) = k, ~ 

for all curves ~, e f~Mxo, is injective. 
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Now then, Kostant (1970) has proved that the image through ~ of the 
equivalence classes of the gauge fields which give rise to the same 2-form F 
of M (in this case to the same electric and magnetic fields) is an orbit of the 
action of Horn (~rl(M), U(1)) on H-Hom (s U(I)) defined by 

I. r i f t )  = l(7). n ( D ] )  

for any l E H-Horn (~Mxo, U(1)), FIe  Horn (zrz(M), U(1)) and 7 e s 
Since this action is free, there are Card {Hom (zr~(M), U(1))} classes of  gauge 
fields which give rise to the same electric and magnetic fields. 

If  M is simply connected, ~x(M) = 0 and Horn (0, U(1)) = {i}. There- 
fore, in this case there is only one class of gauge fields giving rise to one F. 
But as, in general, Horn (~I(M), U(1)) -r {1}, there can be more, and conse- 
quently, not all gauge fields with the same electric and magnetic fields are 
equivalent. 

3. OBSERVABILITY OF THE CLASSICAL 
ELECTROMAGNETIC GAUGE FIELDS 

Let us consider 

M = ~ 2 •  

A being the complementary in •2 of the dashed region in Figure I. Since 
,rl(M) = E, if 7o is any simple closed curve of M whose graph is the immer- 
sion in M of the subset co of A pointed out in Figure 1 and Xo = 70(0) = 
70(0, each element h ~ Horn (Trl(M), U(1)) is perfectly labeled by h([7o])e 
u(1).  

Proposition 2. For each a E U(1) there exist a unique class of gauge 
fields on M with gauge group U(1) whose associated field F is null 
and such that 

~(Y~)(7o) = a (3.1) 

This class Y~ uniquely associated to each a ~ U(I) is such that also 
any curve 7 e s homotopic to 7o satisfies 

KCs = a 

Proof. Obviously the canonical connection I ~ of M x U(1) has null 
curvature and therefore gives rise to a null F. Now, since K([f~]) is the neutral 
element of H-Horn (s U(1)), ifh is the only element of Hom (~rl(M), U(1)) 
with h([7o]) = a, K([I~]) �9 h ~ H-Hom (OMxo, U(1)) satisfies 

{~([I~]) - h)(7o) = K([I~])(7o) �9 h([7o]) = a 
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T~ being the class of gauge fields of M with gauge group U(1) such that 

~(Y~) = ~([I~]) �9 h, Y~ satisfies (3.1) and is obviously unique. Lastly, V being 
any curve of s homotopic to 7'o, it follows that 

= = a 

The element a e U(1) is called by Wu and Yang (1975) "phase factor" 
of any P of Ya. 

Since in classical electromagnetism the physically relevant quantity is the 
field F, all classes {Y~; a ~ U(1)} of gauge field with F = 0 give rise, in the 
classical picture, to iaentical observable effects. But this is different in quantum 
mechanics, because provided the dimensions of the dashed part of Figure 1 
are suitable, the observed results in the Aharonov-Bohm experiment 
(Chambers, 1960) are different for each phase factor, and those corresponding 
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to every phase factor are observed. This implies that each class of  gauge fields 
Y~ is observable, since its effects are experimentally observed, and are 
distinguishable from those caused by the other classes Y~ with b -r a. 

If F is not null, the phase factor is no longer independent of the simple 
loop chosen, but the result holds. 

This result is not peculiar to the manifold M = E 2 x A, for the same 
result would follow with any manifold of the form M = lt~ x B, B being an 
open connected submanifold of ll~ 3 with %(B) = 7/. Analogous results follow 
when ~q(B) = Z ~, though in this case there are n phase factors. 

Consequently, extrapolating these results it can be stated that for any 
open and connected submanifold M of any space-time (~ ,  g) the classes of  
electromagnetic gauge fields defined on M are physically distinguishable, since 
when they give rise to different fields F they are so by the laws of classical 
electromagnetism, and when they give rise to the same F they are made so 
by the result of an experiment similar to that of Aharonov-Bohm. 

On the contrary, the Aharonov-Bohm experiment states that all 
equivalent gauge fields yield the same observable results, for the latter depend 
only on the phase factor a ~ U(1) which is the same for all gauge fields P of 
the class r~. In principle it could be thought that this degeneracy might be 
removed by a different physical experiment, but this is not so due to the 
gauge invariance of the wave equations and physical observables of quantum 
particles subject to the action of a classical electromagnetic field. Indeed, P 
being an electromagnetic gauge field defined in a principal fiber bundle 
P(M, U(1)) whose connection 1-form is ~o, and ~ being a section of  a complex 
vector fiber bundle E(M, P, C ") associated to P which is a solution of the 
wave equation of a given quantum particle under the action of F, for any 
function ~ o f M i n  C with values in U(1) it holds that 4' = ~4 is a solution to 
the same wave equation for the gauge field P' equivalent to F whose connec- 
tion form co' is defined by (2.2). And, since for any vector field X of M 

v ~ '  = ~.vx~ 

Vx and V) being the covariant derivatives with respect to F and F' in the 
direction of X, for any pseudo-Hermitian metric H defined in E it holds that 

H(4, 4) = H(4', 49 

H(Vz4, 4) = H(V~4', 43 

H(Vx4, Vx4) = H(V'x4', V ~ ' )  

which implies that the states (4, P) and (qS', F') of the particle and electro- 
magnetic field are physically indistinguishable. Now, since all gauge fields 
of P equivalent to P are obtained in this way, and since a similar reasoning 
can be used for the pairs of equivalent electromagnetic gauge fields when 
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they are defined in different principal fiber bundles, equivalent electromagnetic 
gauge fields are physically indistinguishable, in the same way as in quantum 
mechanics all vectors in the same ray of Hilbert space are so. And, following 
the same analogy, in the same way in which in quantum mechanics a pure 
state of a quantum system is considered described by a ray in a Hilbert space, 
and not by any particular one of its vectors, also in electromagnetism it must 
be considered that a state of  the classical electromagnetic field is described by 
an equivalence class of  gauge fields, and not by any particular gauge -field of  
this class. 

4. OBSERVABILITY OF THE GRAVITATIONAL GAUGE 
FIELD IN GENERAL RELATIVITY 

A space-time (d//, g) is a four-dimensional connected and orientable 
manifold ~ in which there is defined a (Lorentzian) metric g with signature 
( -  + + + )  such that i f / i s  g time orientable. The unique linear connection 
on M torsionless and metric with respect to g is the Levi-Civita connection P0- 

In Einstein's General Relativity theory the gravitational field is described 
by the Levi-Civita connection Po in a space-time (J//, g) whose geodesics 
~,: [0, 1] --> ~ '  such that for any t E [0, 1], g(~t, Pt) < 0 with ~'t = y,~(1), verify 
that 7,([0, 1]) is a segment of a trajectory of a possible material test particle 
(submitted only to the action of that gravitational field and neglecting its own 
gravitational field and quantum effects). 

Therefore in that theory if two gravitational fields Po and Po associated 
to two space-times ( i t ,  g) and (Jff, g) defined on the same manifold ~ are 
physically indistinguishable, they give rise to the same trajectories for all 
material test particles. And hence the following proposition holds. 

Proposition 3. The gravitational fields Po and ro associated to two 
space-times (~' ,  g) and (Jd, g) are physically indistinguishable iff 
there is a real positive constant A such that g = Ag; and in this case 

P0 ~--- ~0" 

Proof. Let p be any ~ '  point and v a vector of T~(J[), the tangent space 
to d / a t  p. Let rv be the endomorphism of T~(J//) defined by 

�9 v(w) = ( ~  - v o ) x  

for any vector field X of dg with Xp = w, where V~ and V~ are the covariant 
derivatives in the direction v with respect to Fo and ]?o. For any v ~ T~(~') 
with g(v, v) < 0 there exists a curve y geodesic with respect to g with 
y(1/2) = p, andy(t)  # y(t ') for t =/: t',f'li2 -= v, andg(~,t,~)~) < 0 for all t ~ [0,1]. 
Therefore, if I' o and Po are indistinguishables, due to the fact that y([0, 1]) 
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is a segment of  a t rajectory o f  a possible test particle moving under  F0, it must  
also be so under  the action of  Fo, and therefore there will exist also a geodesic 
,7of(de', ~) with,7([0, 1]) C ~([0, 1]), ,~(1/2) = v, 5(1/2) = p, and g@t, ~t) < 0 
for all t e [0, 1]. N o w  dr '  is Haussdorff ,  hence ~,([0, 1]) and ~7([0, 1]) are closed 
sets o f  d f  and then there are two vector  fields X and )7 of  J/{ with J(~(~) = ~t 
and -Y~c~) = ')1 for  all t E [0, 1]. Hence,  there is a function f :  [0, 1] ~ R - {0} 
verifying -YT(t) = f(t)X?(t) for  every t ~ [0, 1]. And because 

df/dt(1/2)v + VTvX = V~(.Y) = 0 and VvX --- 0 

rv(v) = V v X -  V~X = -d f /d t (1 /2)v  = %v (4.1) 

where av = - df/dt(1/2). 
N o w  if v e Tp(d[) verifies g(v, v) < 0, it verifies also g(v, v) < 0, and the 

sets Vp = {v e Tp(J[ ) ;  g(v, v) < 0} and V~ = {v e T~(Jt ');  g(v, v) < 0} are the 
same. Therefore,  if we consider the unique topology compat ib le  with any 
norm in Tp(dg), the boundary  of  V~, which is the set o f  v e Tp(~r162 with ~(v, v) 
= 0], is the same as that  of  Vp [set o f v  e Tp(dr with ~(v, v) = 0]. Because of  
this for  all v e Tp(Jr with g(v, v) = 0 it happens  also that  g(v, v) = 0 and vice 
versa, i.e., the light cones o fgv  and g~ are the same. But in this case we have 
gv = Apg~ with a Ap > 0, and therefore there is a funct ion A: J d  --> (0, oo) 
with A(p) = A~, p e Jr Fo r  any vectors v, v', w e T p ( ~ )  we have, therefore, 

2 g ( r S ,  w) = g(v, w)v'(log 2,) + g(v', w)v(log 2,) - g(v, v')w(log ? 0 (4.2) 

I f  v and v' are two vectors of  Tp(~ ' )  with g(v, v) = g(v', v') = 0 and g(v, v') < 
t 0, as g(v + v ,  v + v') < 0, f rom (4.1) and (4.2) we obtain for  all rj e 

2g[r~+,~,(*Tv' + v), v] = 2r/%+~v.g(v, v') = 2~2g(v, v')v'(log ,~) 

2g[r~+,~.(v + ~v'), v'] = 2a~+,v,g(v', v) = 2v(log A)g(v, v') 

which implies 

~v'(log/~) = v(log ,~) = a~+,~, 

But as v(log A) is *7 independent ,  all sides of  the above equality must  be zero, 
and because the set o f  vectors v e Tp(,/f) with g(v, v) = 0 is a system of  
generators  of  Tp(MZ), this implies d(log A) = 0 = d,~. Hence, because r,,w = 0 

for  any v, w ~ T~(dg), we have VT~ = V~; i.e., Fo = Fo. On the other  hand,  the 
connectedness of  d/t' implies that  A is a constant  in rig. Lastly, if  F0 --- Fo, it is 
obvious that  the gravi tat ional  fields described by both  gauge fields are physic- 
ally equivalent. [ ]  

As a consequence of  the above proposi t ion the gauge field of  Einstein's 
Genera l  Relativity theory is totally observable:  to know it completely  it is 
enough, for  example,  to study the trajectories of  the test particles under  the 
action of  this field, because there is only one gravi ta t ional  gauge field which 
gives rise to them. 
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5. CONCLUSIONS AND DISCUSSION 

From Sections 3 and 4 it follows the existence of a structural difference 
between the observability of the classical electromagnetic gauge field and that 
of gravitational gauge field of General Relativity, because this is physically 
directly observable, while on the other one we can observe only its equivalence 
classes, but the gauge field itself is not directly observable. 

This structural difference is due to the attachment of the General 
Relativity gravitational field to the space-time (~', g), specifically to the 
tangent bundle of J/g, which makes it a very singular gauge field, because the 
other possible physical gauge fields existing in nature are not so connected 
to the space-time, and hence for them it is to be expected the same as for the 
electromagnetic field, i.e., that its equivalence classes be observable, since the 
different gauge fields in each class are not, by the same reason why they are 
not observable either for the electromagnetic field as we saw at the end of 
Section 3. However, the practical realization of Aharonov-Bohm-type experi- 
ments for the other gauge fields to check the observability of its equivalence 
classes meets technical difficulties (Wu and Yang, 1975). 

As a consequence of all this one can conclude that in spite of the 
common gauge character of all fundamental interactions, gravitation exhibits 
peculiar characteristics, coming from its special attachment to space-time. 
Therefore, the unified field theories including the gravitational field must 
explain this difference of the observability of the different unified gauge fields 
if they are to describe correctly the individual effects of each one in absence 
of the others; and this confers to the gravitational field a peculiar character 
in these theories, which is also a consequence of the universal character of 
this field. 
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